Search results for " Blade shape"

showing 3 items of 3 documents

Performance improvement of a Savonius water rotor with novel blade shapes

2021

Abstract Savonius water rotor is a prominent drag based turbine able to extract energy available in flowing water with low velocity like river streams, tidal currents or other man made water canals. However, in view of its low performance, an enhanced design of the rotor blades is necessary to better its efficiency. Therefore, the present study aims to improve the efficiency of Savonius rotor by changing the blade design. Different blade shapes were investigated numerically using computational fluid dynamics (CFD). Using conventional design, the peak power coefficient was found to be 0.166 at tip-speed ratio of 0.78. However, the peak power coefficient reaches 0.184 using the optimal blade …

Work (thermodynamics)Environmental EngineeringMaterials scienceBlade (geometry)Rotor (electric)business.industryOcean EngineeringComputational fluid dynamicsTurbinelaw.inventionSettore ICAR/01 - IdraulicaSavonius rotor Blade shape Hydrokinetic rotor Efficiency CFD Flow characteristicsDraglawPerformance improvementbusinessEnergy (signal processing)Marine engineering
researchProduct

Performance Study of Twisted Darrieus Hydrokinetic Turbine With Novel Blade Design

2021

Abstract Twisted Darrieus water turbine is receiving growing attention for small-scale hydropower generation. Accordingly, the need for raised water energy conversion incentivizes researchers to focus on the blade shape optimization of twisted Darrieus turbine. In view of this, experimental analysis has been performed to appraise the efficiency of a spiral Darrieus water rotor in the present work. To better the performance parameters of the studied water rotor with twisted blades, three novel blade shapes, namely U-shaped blade, V-shaped blade, and W-shaped blade, have been numerically tested using a computational fluid dynamics three-dimensional numerical model. The maximum power coefficie…

060102 archaeologyBlade (geometry)Renewable Energy Sustainability and the Environmentbusiness.industryTurbulence020209 energyMechanical EngineeringEnergy Engineering and Power Technology06 humanities and the arts02 engineering and technologyComputational fluid dynamicsTurbineSettore ICAR/01 - IdraulicaFuel TechnologyGeochemistry and Petrology0202 electrical engineering electronic engineering information engineeringEnvironmental science0601 history and archaeologybusinessalternative energy sources blade shape CFD efficiency energy extraction of energy from its natural resource flow characteristics power (co-) generation renewable energy twisted bladeHydraulic turbinesMarine engineeringJournal of Energy Resources Technology
researchProduct

Design of Reliable and Efficient Banki-Type Turbines

2020

A new shape for the external surface of the Crossflow turbine blades is proposed, which allows for the preservation of hydraulic efficiency in spite of a significant maximum blade thickness providing mechanic robustness and reliability. The final shape of the blades is assessed using an iterative solution for two uncoupled models: a 2D computational fluid dynamic (CFD) and a structural 3D finite element method (FEM) analysis of a single blade. Application of the proposed methodology to the design of a power recovery system (PRS) turbine, a new backpressure Crossflow-type inline turbine for pressure regulation, and energy production in a real Sicilian site follows.

banki turbinecrossflow turbineHydraulic efficiencyTurbine bladebusiness.industryComputer scienceMechanical engineeringComputational fluid dynamicsTurbineFinite element methodSettore ICAR/01 - Idraulicalaw.inventioncrossflow blade shapeRobustness (computer science)lawbusinessThe 4th EWaS International Conference: Valuing the Water, Carbon, Ecological Footprints of Human Activities
researchProduct